

Sub-seasonal Forecasting Systems at Environment Canada

Bertrand Denis

Chief, NWP Section

Canadian Centre For Meteorological and Environmental Prediction

(CCMEP aka CMC)

&

Normand Gagnon (CCMEP), Hai Lin (EC/RPN) and Bill Merryfield (EC/CCCma)

Outline

- Background
 - Current operational extended and long-range prediction systems at EC
- The new experimental sub-seasonal prediction system based on the Global EPS
 - System design
 - The reforecast (hindcast) strategy
 - Computational aspects
 - Preliminary comparison with current operational monthly prediction system based on CanSIPS
 - Products
 - Data availability
 - Future plan

Background

- Current operational extended and long-range prediction systems
 - **GEPS** (week 1 & 2)
 - 20 GEM model members
 - IC produced by ENKF, no lagged IC
 - 50 km horizontal resolution
 - Not coupled with ice-ocean model
 - Contribute to NAEFS
 - CanSIPS (monthly and seasonal);
 - 20 members (2 CCCma climate models, 10 from each)
 - IC produced using Incremental Analysis Update (IAU), no lagged IC
 - 300 km horizontal resolution
 - Fully coupled with 3D ice-ocean model
 - Contribute to NMME

The new experimental sub-seasonal prediction system based on Global EPS

System design:

- Configuration based on current operational GEPS 4.0.0 used for 16 days forecasts twice a day:
 - GEM model with 50 km grid, 40 levels, top at 2 hPa
 - 20 members, ICs from ENKF (256 members), ICs not lagged
 - Land properties are initialized using real-time CMC analyses
 - Physics perturbations: multi-parametrizations physics, stochastic perturbations of physics tendencies, stochastic energy back-scattering
 - Uncoupled but
 - SST anomalies (averaged of 30-day prior) are persisted
 - Sea-ice is adjusted as a function of threshold of SST

For weeks 3 & 4 purposes:

- We extend the forecast to 32 days, once a week (Thursdays at 00Z)
- We run a reforecast (18 years) on the fly for the corresponding real-time forecast period

The GEPS reforecast (hindcast) strategy

- We do « reforecast » with GEPS mainly to generate:
 - Climate (average and standard deviation) for monthly forecast (32 days)
 - Climate for Extreme Forecast Index calculation
 - Calibration of the forecast probabilities to improve upon member counting
- The reforecast is done on-the-fly as in ECMWF (see Hagedorn, 2008)
- Built-in in the GEPS operational suite Advantages:
 - The model climatology used to compute the anomaly forecasts is always up-to-date
 - The operational GEPS is upgraded frequently, at least once a year. It would be painful to redo each time the reforecast in a R&D
 - The Operations Division monitors the reforecasts on a 24/7

The GEPS reforecast (hindcast) strategy

 We use 4 members instead of 20 but we use a moving-window of 5 reforecast dates for a better climate variability sampling. This way we use a historical database of 360 reforecasts for each real-time forecast.

These dates are put together to calculate model climate statistics...

The GEPS reforecast (hindcast) strategy

- Challenges and approaches for the historical ICs
 CMC doesn't have 18 years of reanalysis neither upper air or surface
 - Atmospheric ICs
 - Rely on ERA-interim reanalysis. Perturbed analyses are generated by introducing homogenous and isotropic perturbations using an algorithm from the ENKF
 - Surface ICs
 - The initial SST and the sea ice cover conditions are the ones used in the ERA-interim project.
 - A 30 years off-line surface prediction system cycle driven by near-surface atmospheric ERA-interim reanalysis and its associated precipitation was used
 - This proved to be the most sensible and trickiest part of the reforecast configuration project

Computational load aspects of the reforecast

• Every week:

- 4 members X 18 years = 72 reforecasts of 32 days
 This is spread over 6 days of the week. The 7th day is for the real-time forecast
- 72 reforecasts / 6 days = 12 reforecast runs of 32 days per day (3 dates x 4 members)
- This equivalent to around 46% of the total cost of the GEPS forecasts (including monthly forecast and the twice daily 16 days forecasts)
- Reforecast runs are performed by the operations during low traffic hours on the supercomputer
- We run in advance 2 reforecast dates of the 5 dates18-year movingwindow (see earlier diagram). This give us 2 weeks of slack to resolve operational issues that may arise with the system before the reforecast is needed for the real-time forecast.

Preliminary comparison: Experimental monthly GEPS vs operational CanSIPS

- Fair comparison using verification over the same reforecast (hindcast) period
 - January (from the 1st to the 31st) reforecasts over 26 years (1985-2010)
 - CanSIPS uses its previously computed hindcast (not on-the-fly)
 - Verification results for July forecasts available soon
- ERA-interim monthly means are used as truth
- Verification scores shown (for 2m temperature only)
 - Serial correlation over the 26 years
 - Percent correct (3 categories; below, near, above)

Serial correlation of T2m (January 1985-2010)

CanSIPS

GEPS

Serial correlation of T2m (January 1985-2010)

CanSIPS

Better over ocean

GEPS

Serial correlation of T2m (January 1985-2010)

CanSIPS

GEPS

Better over land

3 category Percent Correct of T2m (January 1985-2010)

CanSIPS

Better over ocean

GEPS

3 category Percent Correct of T2m (January 1985-2010)

CanSIPS

GEPS
Better over land

Products

 At first we plan to generalize our NAEFS products currently for weeks 1-2 to weeks 3-4: http://weather.gc.ca/ensemble/naefs/index_e.html

- Extend the application of our Extreme Forecast Index (EFI)
- The range of possible products is huge! A potential gold mine to exploit but that represents a lot of work (calibration, verification & expected skill, many sector of applications)

Data availability

- Almost ready to start contributing to the WWRP/WCRP S2S project data depot at ECMWF
- When officially operational, we plan to put the GEPS monthly forecast and reforecast data output on our public data depot (dd.weather.gc.ca)
- Could eventually contribute to the WMO LRF MME for the sub-seasonal timescale
- Could be part of a sub-seaonal NMME project and/or the NAEFS data exchange

Future plan

- Produce extensive reforecast verification following WMO standard verification system approach as much as possible and make the results available
- Complete comparison GEPS vs CanSIPS
- Switch the official production of monthly forecasts from CanSIPS to GEPS
- Make available the forecast and reforecast data (public depot, S2S project, NAEFS, NMME, WMO, etc..)
- Enhance products offering
- Develop probabilistic forecast calibration (including 2nd moment) specific for GEPS week 1,2,3,4

Future plan

- Go from weekly issuance to bi-weekly?
- Go from 32 days to 45 days?
- On the modeling side one of the next most important step for the sub-seasonal timescale is to couple each GEPS member with an ocean model (NEMO)

Thanks!

